Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice.
نویسندگان
چکیده
Rett syndrome is an X-linked neurological condition affecting almost exclusively girls that is caused by mutations of the MECP2 gene. Recent studies have shown that transgenic delivery of MeCP2 function to Mecp2-deficient male mice can improve their Rett-like behavior. However, as the brain of a Rett girl contains a mosaic of MeCP2 expressing and non-expressing neurons, and the over-expression of MeCP2 in neurons can induce a severe progressive neurological phenotype, testing whether functional rescue can be achieved by gene re-introduction strategies in a female model of Rett syndrome is warranted. To address this, we generated transgenic mice expressing an epitope-tagged Mecp2 transgene in forebrain neurons. These mice over-express MeCP2 protein at about 1.6 times normal levels in cortex and develop impaired motor behavior by 9-12 months of age. To test whether forebrain-targeted MeCP2 restoration would improve behavior in female Mecp2(-/+) mice, we crossed these transgenics with Mecp2(-/+) mice and examined the behavioral properties of the female rescue mice for 1 year. These assessments revealed that the diminished rearing activity, impaired mobility and the diminished locomotive activity of female Mecp2(-/+) mice were restored to wild-type levels in the rescue mice. These results show that improvement of Rett-like behavior can be achieved in Mecp2(-/+) females by targeted gene re-introduction without inducing deficits relating to MeCP2 over-expression.
منابع مشابه
Selective preservation of MeCP2 in catecholaminergic cells is sufficient to improve the behavioral phenotype of male and female Mecp2-deficient mice.
Rett syndrome (RTT) is a neurodevelopmental disorder caused primarily by mutations of the X-linked MECP2 gene. Although the loss of MeCP2 function affects many neural systems, impairments of catecholaminergic function have been hypothesized to underlie several of the cardinal behavioral deficits of RTT patients and Mecp2-deficient mice. Although recent Mecp2 reactivation studies indicate that R...
متن کاملExpression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice.
Mutations in MECP2 are the cause of Rett syndrome (RTT) in humans, a neurodevelopmental disorder that affects mainly girls. MeCP2 is a protein that binds CpG dinucleotides and is thought to act as a global transcriptional repressor. It is highly expressed in neurons, but not in glia, of the postnatal brain. The timing of MeCP2 activation correlates with the maturation of the central nervous sys...
متن کاملRescue of behavioral and EEG deficits in male and female Mecp2-deficient mice by delayed Mecp2 gene reactivation
Mutations of the X-linked gene encoding methyl CpG binding protein type 2 (MECP2) are the predominant cause of Rett syndrome, a severe neurodevelopmental condition that affects primarily females. Previous studies have shown that major phenotypic deficits arising from MeCP2-deficiency may be reversible, as the delayed reactivation of the Mecp2 gene in Mecp2-deficient mice improved aspects of the...
متن کاملDdh142 1275..1286
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in MECP2, encoding methyl-CpG-binding protein 2 (MeCP2). The onset of symptoms in RTT is delayed until 6–18 months and 4–6 months in the Mecp2 2/1 mouse model, corresponding to a dynamic and gradual accumulation of MeCP2 expression in individual neurons of the postnatal brain. Because of X chromosome inactivation...
متن کاملX-Chromosome inactivation ratios affect wild-type MeCP2 expression within mosaic Rett syndrome and Mecp2-/+ mouse brain.
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in MECP2, encoding methyl-CpG-binding protein 2 (MeCP2). The onset of symptoms in RTT is delayed until 6-18 months and 4-6 months in the Mecp2(-/+) mouse model, corresponding to a dynamic and gradual accumulation of MeCP2 expression in individual neurons of the postnatal brain. Because of X chromosome inactivatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 17 10 شماره
صفحات -
تاریخ انتشار 2008